Concurrent TMS to the primary motor cortex augments slow motor learning

نویسندگان

  • Shalini Narayana
  • Wei Zhang
  • William Rogers
  • Casey Strickland
  • Crystal Franklin
  • Jack L. Lancaster
  • Peter T. Fox
چکیده

Transcranial magnetic stimulation (TMS) has shown promise as a treatment tool, with one FDA approved use. While TMS alone is able to up- (or down-) regulate a targeted neural system, we argue that TMS applied as an adjuvant is more effective for repetitive physical, behavioral and cognitive therapies, that is, therapies which are designed to alter the network properties of neural systems through Hebbian learning. We tested this hypothesis in the context of a slow motor learning paradigm. Healthy right-handed individuals were assigned to receive 5 Hz TMS (TMS group) or sham TMS (sham group) to the right primary motor cortex (M1) as they performed daily motor practice of a digit sequence task with their non-dominant hand for 4 weeks. Resting cerebral blood flow (CBF) was measured by H2(15)O PET at baseline and after 4 weeks of practice. Sequence performance was measured daily as the number of correct sequences performed, and modeled using a hyperbolic function. Sequence performance increased significantly at 4 weeks relative to baseline in both groups. The TMS group had a significant additional improvement in performance, specifically, in the rate of skill acquisition. In both groups, an improvement in sequence timing and transfer of skills to non-trained motor domains was also found. Compared to the sham group, the TMS group demonstrated increases in resting CBF specifically in regions known to mediate skill learning namely, the M1, cingulate cortex, putamen, hippocampus, and cerebellum. These results indicate that TMS applied concomitantly augments behavioral effects of motor practice, with corresponding neural plasticity in motor sequence learning network. These findings are the first demonstration of the behavioral and neural enhancing effects of TMS on slow motor practice and have direct application in neurorehabilitation where TMS could be applied in conjunction with physical therapy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impairment of retention but not acquisition of a visuomotor skill through time-dependent disruption of primary motor cortex.

Learning a visuomotor skill involves a distributed network which includes the primary motor cortex (M1). Despite multiple lines of evidence supporting the role of M1 in motor learning and memory, it is unclear whether M1 plays distinct roles in different aspects of learning such as acquisition and retention. Here, we investigated the nature and chronometry of that processing through a temporall...

متن کامل

Differential Effects of Unihemispheric Concurrent Dual-Site and Conventional tDCS on Motor Learning: A Randomized, Sham-Controlled Study

Introduction: Based on the literature, unihemispheric concurrent dual-site anodal transcranial Direct Current Stimulation (a-tDCSUHCDS) of primary Motor cortex (M1) and Dorsolateral Prefrontal Cortex (DLPFC) would be more efficient than conventional a-tDCS of M1 to induce larger and longer-lasting M1 corticospinal excitability. The main objective of the present study was to compare the effects ...

متن کامل

Intensity modulation of TMS-induced cortical excitation: primary motor cortex.

The intensity dependence of the local and remote effects of transcranial magnetic stimulation (TMS) on human motor cortex was characterized using positron-emission tomography (PET) measurements of regional blood flow (BF) and concurrent electromyographic (EMG) measurements of the motor-evoked potential (MEP). Twelve normal volunteers were studied by applying 3 Hz TMS to the hand region of prima...

متن کامل

The interaction with task-induced activity is more important than polarization: a tDCS study.

BACKGROUND Anodal transcranial direct current stimulation (A-tDCS) is a non-invasive technique in which cortical polarization can be used to increase excitability and facilitate learning through the modulation of neuroplasticity. Although the facilitatory effects of A-tDCS are well documented, there is evidence that they are not always present and may even be reversed during task execution. O...

متن کامل

Motor learning elicited by voluntary drive.

Motor training consisting of voluntary movements leads to performance improvements and results in characteristic reorganizational changes in the motor cortex. It has been proposed that repetition of passively elicited movements could also lead to improvements in motor performance. In this study, we compared behavioural gains, changes in functional MRI (fMRI) activation in the contralateral prim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • NeuroImage

دوره 85 Pt 3  شماره 

صفحات  -

تاریخ انتشار 2014